11 Spectral Subtraction
نویسنده
چکیده
pectral subtraction is a method for restoration of the power spectrum or the magnitude spectrum of a signal observed in additive noise, through subtraction of an estimate of the average noise spectrum from the noisy signal spectrum. The noise spectrum is usually estimated, and updated, from the periods when the signal is absent and only the noise is present. The assumption is that the noise is a stationary or a slowly varying process, and that the noise spectrum does not change significantly inbetween the update periods. For restoration of time-domain signals, an estimate of the instantaneous magnitude spectrum is combined with the phase of the noisy signal, and then transformed via an inverse discrete Fourier transform to the time domain. In terms of computational complexity, spectral subtraction is relatively inexpensive. However, owing to random variations of noise, spectral subtraction can result in negative estimates of the short-time magnitude or power spectrum. The magnitude and power spectrum are non-negative variables, and any negative estimates of these variables should be mapped into non-negative values. This nonlinear rectification process distorts the distribution of the restored signal. The processing distortion becomes more noticeable as the signal-to-noise ratio decreases. In this chapter, we study spectral subtraction, and the different methods of reducing and removing the processing distortions. S Noise-free signal space After subtraction of the noise mean Noisy signal space
منابع مشابه
Different Approaches of Spectral Subtraction method for Enhancing the Speech Signal in Noisy Environments
Enhancement of speech signal degraded by additive background noise has received more attention over the past decade, due to wide range of applications and limitations of the available methods. Main objective of speech enhancement is to improve the perceptual aspects of speech such as overall quality, intelligibility and degree of listener fatigue. Among the all available methods the spectral su...
متن کاملDifferent Approaches of Spectral Subtraction Method for Speech Enhancement
Enhancement of speech signal degraded by several types of noise is a topic of interest for last many years. The main aim of speech enhancement algorithm is to improve the quality and/or intelligibility of the noisy speech signals by using various techniques and algorithms. Among the all available methods, the spectral subtraction algorithm is the historically one of the first algorithm proposed...
متن کاملLarge vocabulary continuous speech recognition under real environments using adaptive sub-band spectral subtraction
In this study, we propose an Adaptive Sub-Band Spectral Subtraction (ASBSS) method which can vary noise subtraction rate according to SNR in frequency bands at each frame. In the conventional Spectral Subtraction(SS), speech spectral is estimated by adjusting noise subtraction rate according to SNR. In general, SNR is defined and computed as the average over all the input speech signal. However...
متن کاملSpectral Subtraction in the Wavelet Domain for Speech Enhancement
In this paper we propose a new approach for speech enhancement. The method used to remove the noise components is a combination of two methods: Wavelet de-noising and spectral subtraction. The idea is to apply the spectral subtraction to wavelet approximations and details coefficients. A new parameter for spectral subtraction in unvoiced speech frames is introduced and the existing power factor...
متن کاملNoise reduction based on adaptive β-order generalized spectral subtraction for speech enhancement
Though spectral subtraction has widely been used for speech enhancement, the spectral order β set in spectral subtraction is generally fixed to some constants, resulting in the performance limitation to a certain degree. In this paper, we first analyze the performance of the β-order generalized spectral subtraction in terms of the gain function to highlight its dependence on the value of spectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001